Linear Differential Equations as a Data Structure

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

Linear Differential Equations

1. Linearity and Continuity 1.1 Continuity 1.2 Linearity 1.3 Perturbation theory and linearity 1.4 Axiomatically linear equations 1.4.1 Fields, Maxwell equations 1.4.2 Densities on phase space in classical physics 1.4.3 Quantum mechanics and Schrödinger equation 2. Examples 2.1 Ordinary differential equations 2.2 The Laplace equation 2.3 The wave equation 2.4 The heat equation and Schrödinger e...

متن کامل

Reversible linear differential equations

Let ∇ be a meromorphic connection on a vector bundle over a compact Riemann surface Γ. An automorphism σ : Γ → Γ is called a symmetry of ∇ if the pull-back bundle and the pull-back connection can be identified with ∇. We study the symmetries by means of what we call the Fano Group; and, under the hypothesis that ∇ has a unimodular reductive Galois group, we relate the differential Galois group,...

متن کامل

Solving linear differential equations

The theme of this paper is to ‘solve’ an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galois theory are the main tools. The results extend the classical work of G. Fano.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations of Computational Mathematics

سال: 2019

ISSN: 1615-3375,1615-3383

DOI: 10.1007/s10208-018-09411-x